

A⁺⁺" Accredited by NAAC(2021) With CGPA 3 52

SHIVAJI UNIVERSITY, KOLHAPUR - 416004, MAHARASHTRA

PHONE:EPABX-2609000, www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर - ४१६००४,महाराष्ट्र

दूरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दुरध्वनी विभाग ०२३१–२६०९०९४

जा.क्र.शिवाजी वि. / अमं / 732

दिनांक. 09/10/ 2023

प्रति,

मा. अध्यक्ष व सदस्य, सर्व अभ्यास⁄अस्थायी मंडळे (सायन्स) शिवाजी विद्यापीठ, कोल्हापूर

विषय :- शैक्षणिक वर्षे 2023-24 पासून एम.एस्सी. अभ्यासक्रमाच्या आराखडया (Structure) बाबत.

महोदय / महोदया,

उपरोक्त विषयास अनुसरून आदेशान्वये कळविण्यात येते की, राष्ट्रीय शैक्षणिक धोरण, 2020 ची राज्यातील अंमलबजावणीच्या अनुषंगाने विद्यापीठ अधिकार मंडळाच्या निर्णयानुसार शैक्षणिक वर्षे 2023–24 पासुन एम.एस्सी. अभ्यासक्रमासाठी सोबत जोडलेला कॉमन आराखडा (Structure) व Formatting (Templet) लागू करण्यात आले आहे याची नोंद घ्यावी.

सदरची बाब सर्व शिक्षक, विद्यार्थी व संबंधीतांच्या निदर्शनास आणावी.

कळावे,

विश्वा आपला कुबल) उपकुलेसचिव

प्रतः–

प्र.अधिष्ठाता विज्ञान व तंत्रज्ञान विद्याशाखा मा.संचालक परीक्षा व मुल्यमापन मंडळ परीक्षक नियुक्ती विभाग—1,2 सर्व परीक्षा विभाग (ऑन) माहितीसाठी व पुढील योग्य त्या कार्यवाहीसाठी.

SHIVAJI UNIVERSITY, KOLHAPUR - 416 004, MAHARASHTRA

www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापुर - ४१६ ००४, महाराष्ट्र

दरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दरध्वनी ०२३१–२६०९०९३/९४

SU/BOS/Science/499

Date: 10/07/2023

The Drineinel	The Head/Co. andinaton/Director
The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Institutions	All Concerned Department (Science)
Shivaji University, Kolhapur	Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-I (Sem. I & II) as per NEP-2020 degree programme under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-I (Sem. I & II) as per NEP-2020 degree programme under the Faculty of Science and Technology.

	M.ScPart I (Sem. I & II)	as per	r NEP-2020
1.	Microbiology (HM)	10.	Data Science
2.	Pharmaceutical Microbiology (HM)	11.	Computer Science
3.	General Microbiology	12.	Information Technology (Entire)
4.	Electronics	13.	Food Science & Technology
5.	Embedded Technology	14	Food Science & Nutrition
6.	Geology	15.	Biochemistry
7.	Sugar Technology (Entire)	16.	Biotechnology
8.	Alcohol Technology (Entire)	17.	Medical Information Management
9.	Agro Chemical & Pest Management (AGPM)	18.	Environmental Science
		19.	Physics

This syllabus, nature of question and equivalence shall be implemented from the academic year 2023-2024 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in</u>)

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2023 & March/April 2024. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Dy Registrar Dr. S. M. Kubal

Copy to:

1	The Dean, Faculty of Science & Technology	8	P.G. Admission/Seminar Section
2	Director, Board of Examinations and Evaluation	9	Computer Centre/ Eligibility Section
3	The Chairman, Respective Board of Studies	10	Affiliation Section (U.G.) (P.G.)
4	B.Sc. Exam/ Appointment Section	11	Centre for Distance Education

To.

SHIVAJI UNIVERSITY, KOLHAPUR

Established: 1962

 $A^{\rm ++}$ Accredited by NAAC (2021) with CGPA 3.52

Structure and Syllabus in Accordance with

National Education Policy - 2020

with Multiple Entry and Multiple Exit

Master of Science (General Microbiology)

under Faculty of Science and Technology

(To Be Implemented From Academic Year 2023-24)

1. Preamble:

Total number of semesters	: 02 (Per year)
Total No. of papers	: 06 (Per year)
Total no. of practical courses	: 04 (Per year)
Maximum marks per paper (Theory)	: 100
Distribution of marks (Theory only) –	
Internal evaluation	: 20
External evaluation	: 80
(Semester exam)	
Total marks for M. Sc. Degree Course	
Theory papers	: 1200
Practical course	: 550
Research Methodology	: 100
OJT / Field Project	: 100
Research Project	: <u>250</u>
-	2200

2. Duration – For level 6.5 (4 Years B.Sc.) - 1 Year; for level 6.0 (3 Years B.Sc.) - 2 Years

3. Eligibility for admission – B.Sc. Microbiology / Industrial Microbiology

4. Medium of instruction - English

5. Programme Structure

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. (General Microbiology) Part – I (Level-6.0)

	Course Code	Tea	ching Schem	e		Examination Scheme				
		Theo	ry and Practi			ersity Assessme			l Assessment	(IA)
		Lectures +	Practical	Credit	Maximum	Minimum	Exam. Hours	Maximum	Minimum	Exam.
		Tutorial/ (Hours/	(Hours/ week)		Marks	Marks		Marks	Marks	Hours
		(Hours/ week)	week)							
		,			Semester-I		I			
Major	MMT-101	4		4	80	32	3	20	8	1
Mandatory	MMT -102	4		4	80	32	3	20	8	1
Major	MME - 103	4		4	80	32	3	20	8	1
Elective										
Practical	MMPR -104		8	4	80	32	3	20	8	1
Course	MEPR-105		4	2	40	16	2	10	4	1
Research	RM-106	4		4	80	32	3	20	8	1
Methodology										
Tot	al			22	440			110		
					Semester-II					
Major	MMT-201	4		4	80	32	3	20	8	1
Mandatory	MMT -202	4		4	80	32	3	20	8	1
Major	MME-203	4	-	4	80	32	3	20	8	1
Elective										
Practical	MMPR -204		8	4	80	32	3	20	8	1
Course	MEPR-205		4	2	40	16	2	10	4	1
OJT/FP	OJT-206			4	80*	32	1	20	4	
Tot				22	440			110		
Total (Sem I +	Sem II)			44						

MMT–MajorMandatory Theory	• Total Marks for M.ScI : 1100
MMPR–MajorMandatoryPractical	• Total Credits for M.ScI (Semester I & II) : 44
MET–MajorElective Theory	• Separate passing is mandatory for University and Internal
MEPR–MajorElective Practical	Examinations
• RM - Research Methodology	
OJT/FP- On Job Training/ Field Project	
*Evaluation scheme for OJT/FP shall be decided by concerned BOS	
• Requirement for Entry at Level 6.0: 120 Credits with passing rema	rk at UG level.
Requirement for Exit after Level 6.0: 44 Credits	
Students can exit after completion of Level 6.0 with Post Graduate	Diploma in General Microbiology
Requirement for Entry at Level 6.5: 160	

Structure in Accordance with National Education Policy - 2020 With Multiple Entry and Multiple Exit Options M.Sc. (General Microbiology) Part – II (Level-6.5)

	Course Code	Tea	ching Schem	e	Examination Scheme					
		Theo	ry and Practic			University Assessment (UA)			l Assessment (
		Lectures +	Practicals	Credit	Maximum	Minimum	Exam. Hours	Maximum	Minimum	Exam.
		Tutorial	Hours		Marks	Marks		Marks	Marks	Hours
		(Per week)	(Per week)							
			week)		Semester-III					
Major	MMT-301	4		4	80	32	3	20	8	1
Mandatory	MMT -302	4		4	80	32	3	20	8	1
Major	MME -303	4		4	80	32	3	20	8	1
Elective				·			_			_
Practical	MMPR -304		8	4	80	32	3	20	8	1
Course	MEPR-305		4	2	40	16	2	10	4	0.5
Research	RP-306		8	4	80	32		20	8	1
Project										
Total of	Sem III			22	440			110		
					Semester-IV					
Major	MMT-401	4		4	80	32	3	20	8	1
Mandatory	MMT -402	4		4	80	32	3	20	8	1
Major	MME - 403	4		4	80	32	3	20	8	1
Elective										
Practical	MMPR -404		4	2	40	14	2	10	4	0.5
Course	MEPR-405		4	2	40	14	2	10	4	0.5
Research	RP-406		12	6	100	40	3	50	20	2
Project										
Total of	Sem IV			22	420			130		
Total (Sem III	+ Sem IV)			44	860			240		1100

MMT–MajorMandatory Theory	• Total Marks for M.ScII : 1100							
MMPR–MajorMandatoryPractical	• Total Credits for M.ScII (Semester III & IV) : 44							
MET–MajorElective Theory	• Separate passing is mandatory for University and Internal							
MEPR–MajorElective Practical	Examinations							
RP- Research Project								
# Evaluation scheme for Research Project shall be decided by concerne	d BOS							
## Evaluation scheme for Research Project shall be decided by concerned	ed BOS							
Requirement for Exit after Level 6.5:								
Students can exit after completion of Level 6.5 with Post Graduate in General Microbiology								

6. Programme Outcomes (POs)

- This is a two year M. Sc. program covering all general aspects of Microbiology.
- It helps in developing competent Microbiologists who can progress to diverse fields of microbiological interests in various fields of industries, research, teaching, medical science and entrepreneurship.
- The course is aimed at adding to the knowledge base of Microbiology graduates through significant inputs of latest information on the subject.
- It also envisages that the students read original research publications and develop the ability of critical evaluation of the study.
- Development of communication skills as well as laboratory work and team work, creativity, planning and execution are also a major objective of this program.
- In the core courses, the students study the basics of Microbiology along with the basics of subjects allied to and useful in Microbiology (Techniques, Biostatistics, Computer handling and Bioinformatics, Biosafety, Scientific writing and Agricultural and Clinical Microbiology).
- The specializations include topics on various fields of Industrial Microbiology, Fermentation Technology, Quality assurance, Recombinant DNA Technology and Pharmaceutical Microbiology.
- During this program students undertake a On job training, Research Project, field projects which the student is expected to study research methodology through experimental work, literature survey and report writing.
- In On job training, the student is to take training in the Industry for a period of at least two weeks which will help student to study Microbiological aspects in theIndustry.
- Educational tour to various institutes and or industries provides actual microbiological applications in various fields of Microbiology.

7. Course Codes

	M.Sc. Semester-I	
Course code.	Major Mandatory	
MMT 101	Microbial Systematics (4 credit)	MSU0325MML918G1
MMT 102	Immunology (4credit)	MSU0325MML918G2
MMPR	Practical Lab-I (4credit)	MSU0325MMP918G1
MEPR	Practical Lab-II (2credit)	MSU0325MMP918G2
RM 106	Research Methodology (4credit)	MSU0325RML918G
	Major Elective	
MME 103	Biochemistry	MSU0325MEL918G1
WINE 105	Microbial Metabolism	MSU0325MEL918G2
	Environmental Microbiology	MSU0325MEL918G3
	M.Sc. Semester-II	
	Major Mandatory	
MMT 201	Genetics and Molecular Biology (4credit)	MSU0325MML918H1
MMT 202	Fermentation Technology (4credit)	MSU0325MML918H2
MMPR	Practical Lab-III(4credit)	MSU0325MMP918H1
MEPR	Practical Lab-IV(2credit)	MSU0325MMP918H2
OJT/FP 206	Field Project(4credit)	MSU0325FPP918H
	Major Elective	
MME 203	Techniques in Microbiology	MSU0325MEL918H1
WINE 203	Quality Assurance and Validation in Pharma sector	MSU0325MEL918H2
	Microbial Ecology	MSU0325MEL936H3

SHIVAJI UNIVERSITY KOLHAPUR M.Sc. GENERAL MICROBIOLOGY (For Affiliated Colleges) CURRICULAM FRAMEWORK BASED ON 'NATIONAL EDUCATION POLICY 2020 SEM-I

Y		Code	Title of the paper	Credits	Hrs/	Total	Maximum Ma	arks					
E A R I	E V E L			wee	week	Lecturs	Internal Assessment	Univers ity Examin ation	Total				
		Major Mandatory Papers											
		MMT 101	Microbial Systematics	04	04	60	20	80	100				
		MMT 102		04	04	60	20	80	100				
		Major Elective Papers (CHOOSE ANY ONE)											
	6	MET 103- A	Biochemistry	04	04	60	20	80	100				
		MET 103-B	Microbial Metabolism	04	04	60	20	80	100				
		MET 103- C	Environmental Microbiology	04	04	60	20	80	100				
		Minor RM (Compulsory paper)											
		RM 106	Research Methodology	04	04	60	20	80	100				
			-	PRACT	ICAL C	OURSES							
		MMP R- 104	Practical course 1	04		60	20	80	100				
		MEP R - 105	Practical course 2	02		30	10	40	50				

SEM II

Y	L	Code	Title of the paper	Credits	Hrs/	Total	Maximum M	larks					
E A R	E V E L				Week	Lecturs	Internal Assessment	Univers ity Examin ation	Total				
Ι	6	Major Mandatory Papers											
		MMT 201	Genetics and Molecular Biology	04	04	60	20	80	100				
		MMT 202	Fermentation Technology	04	04	60	20	80	100				
		Major Elective Papers (CHOOSE ANY ONE)											
		MET 203- A	Techniques in Microbiology	04	04	60	20	80	100				
		MET 203-B	Quality Assurance and Validation in Pharma sector	04	04	60	20	80	100				
		MET 203- C	Microbial Ecology	04	04	60	20	80	100				
		Minor OJT/FP (Compulsory paper)											
		OJT- 206	On Job Training/ Field Project	04	04	60	20	80	100				
				PRACT	CAL CO	DURSES							
		MMP R- 204	Practical course 1	04		60	20	80	100				
		MEP R- 205	Practical course 2	02		30	10	40	50				

SEM III

Y	L	Code	Title of the paper	Credits	Hrs/	Total	Maximum M	larks				
E A R	E V E L				week	Lecturs	Internal Assessment	Univers ity Examin ation	Total			
I I	6.5		Ν	/lajor Ma	andato	ry Papers						
		MMT 301	Quantitative Biology	04	04	60	20	80	100			
		MMT 302	Medical Microbiology and Virology	04	04	60	20	80	100			
		Major Elective Papers (CHOOSE ANY ONE)										
		MET 303- A	Bioethics, Biosafety, Quality control in Microbiology	04	04	60	20	80	100			
		MET 303-B	Bioinformatics, Biostatistics and Bionanotechnology	04	04	60	20	80	100			
		МЕТ 303- С	Agricultural Microbiology	04	04	60	20	80	100			
		Minor RP (Compulsory paper)										
		RP- 306	Research Project	04	04	60	20	80	100			
				PRACTI	ICAL CO	DURSES						
		MMP R- 304	Practical course 1	04		60	20	80	100			
		MEP R- 305	Practical course 2	02		30	10	40	50			

SEM IV

Y	L E V E L	Code	Title of the paper	Credits	Hrs/	Total	Maximum Marks		
E A R					week	Lecturs	Internal Assessment	Univers ity Examin ation	Total
[6.5	Major Mandatory Papers							
		MMT 401	Food and Dairy Microbiology	04	04	60	20	80	100
		MMT 402	Molecular Biology Tools and Applications	04	04	60	20	80	100
			Major Elec	tive Pap	ers (CH	IOOSE A	NY ONE)	· · · ·	
		MET 403- A	Industrial Waste Management	04	04	60	20	80	100
		MET 403-B	Enzymology and Enzyme Technology	04	04	60	20	80	100
		МЕТ 403- С	Clinical Microbiology	04	04	60	20	80	100
		Minor RP (Compulsory paper)							
		RP- 406	Research Project	06	06	90	50	100	150
		MEP R - 404	Practical course 1	02	02	30	10	40	50
		MEP R- 405	Practical course 2	02	02	30	10	40	50
			Total of Sem. IV				130	420	550
			Total of M.Sc. Course						2200

After completing 44 credits in post graduation there is an exit option and respective candidate will be awarded as 'Post Graduate Diploma In Microbiology (PGDM)'. Exit option will commence from academic year 2024-25 and will be applicable to the candidates who opted for NEP syllabus.

Guidelines for conducting OJT/FP- 206 Field Project in Sem II of the curriculum

(Reference: Government of Maharashtra GR:NEP 2022/ PRA-KRA-09/VISHI-3 SHIKANA, Mantralaya, Mumbai dt. 16 May 2023)

- 1. The candidate should complete the work of RM-MIC 206 after completion of second semester in the summer vacation.
- 2. On job training (OJT)/ Internship/ Apprenticeship of 60 hours must be completed by the candidate in industry/ health sectors / research labs / public testing laboratories / diagnostic laboratories.
- 3. During OJT period the candidate should submit weekly progress report and attendance report to the Head of the department of concerned education institute.
- 4. The administration of the department should keep the record of attendance and progress and that will be submitted to external examiner for verification.
- 5. The evaluation of OJT should be done on following aspects and that should be reflected through training report and presentation of the candidate.
 - The new skills achieved by the candidate during OJT /Internship/ Apprenticeship
 - Whether the period spent by the candidate has enriched his practical skills and subject knowledge.
 - Whether the candidate has inspired for entrepreneurship
- 6. The candidate may opt for field projects as an alternative for On job training (OJT)/ Internship/ Apprenticeship.In case of field projects, the evaluation should be done on the basis of
 - Selection of the field project considering its use for community.
 - Sample size and statistical methods followed for reaching the conclusion.
 - Skills achieved.

Guidelines for conducting RP- 406 Research Project in Sem IV of the curriculum

- 1. RP 406 research project should be completed minimum of 90 hours.
- 2. The research project may be completed in research laboratories, industries, National Incubation Centers, research institutes, public testing laboratories, diagnostic laboratories, etc. The candidates who are not getting an opportunity in cited categories may complete their research in the department of their parent institute.

Assessment for Research Project :

The project shall carry 150 marks. The assessment for the said courses should be carried out as follows;

a. Assessment by Research Guide: The entire project will be assessed by research

guide for 50 marks. Criteria used for the assessment are as follow:

(Confidential and to be sent through with signed sealed envelope by research guide)

Sr. No.	Criteria	Maximum Marks	Obtained Marks
1.	Understanding the basic concept of dissertation	05	
2.	Fulfillment of Aims and objectives	05	
3.	Results, discussion and conclusion	10	
4.	Regularity and punctuality	10	
5.	Literature Review	05	
6.	Fulfillment of Plagiarism norms as per attached certificate	05	
7.	Publication of work	05	
8.	Potential Applications of the work /Social relevance	05	
Total out	of 50		

Note: respective research guide should submit weekly progress report to the head of the department through official mail. Signed print copies of the progress report are also accepted.

Evaluation by external examiner:

External examiner as appointed above will evaluate the dissertation of the candidate for 100 marks. Following criteria should be used for evaluation purpose by external examiner.

Sr. No.	Criteria	Maximum Marks	Obtained Marks
1.	Understanding the basic concept of dissertation	10	
2.	Fulfillment of Aims and objectives	10	
3.	Results, discussion and conclusion	10	
4.	Regularity and punctuality	10	
5.	Literature Review	10	
6.	Fulfillment of Plagiarism norms as per attached certificate	10	
7.	Publication of work (Conference presentation / Research Paper in Journal)	20	
8.	Potential Applications of the work /Social relevance	20	
Total out	c of 100		

b. Internal (institutional) assessment of the project RP-306:

Internal assessment of the project will be carried out in the Department where the candidate is registered for post graduate degree. This will be carried out as follow:

Item	Marks	Note
Presentation of the plan of	10	Should be carried out as open defense.
work		Any suggestions if are should be
		communicated to the guide.
Submission of completed	10	CD ROM should be submitted to the
work in the form of CD		University where the University may
ROM of dissertation copy		take appropriate decision for
along with 2 certified		forwarding it to Shodhganga.
bound copies		Note: Any work having conflicts of
		interest with respect to intellectual
		properties should not be published
		without permission of respective
		guide.
Total marks:		20

University Evaluation:

University evaluation will be carried out for 80 marks. This will be conducted as open defense presentation. For the purpose candidate is allowed to present the work through LCD Projector or any other alternative as available in the institute. In case of national emergencies, online presentation is allowed. For the purpose the candidate is allowed to use online meeting apps as allowed by the central government. For the purpose of the evaluation, external examiners appointed by university at the time of practical exam. One examiner will be external having adequate research experience and minimum qualification as Ph.D. For the purpose any senior academician / senior scientist working in institutes of national and international reputes / senior person working in industry / Entrepreneur with minimum qualification of Ph.D. in Microbiology may be appointed. Another examiner will be appointed from the institute where, the candidate has registered for his/her post graduate degree. Minimum qualification of the internal examiner should be Ph.D. in Microbiology.

Evaluation by External examiner:

Internal examiner as appointed above will evaluate the dissertation of the candidate for 80 marks. Following criteria should be used for evaluation purpose by internal examiner.

Sr. No.	Criteria	Maximum	Obtained
		Marks	Marks
1.	Understanding the basic concept of dissertation	10	
2.	Fulfillment of Aims and objectives	10	
3.	Results, discussion and conclusion	10	
4.	Regularity and punctuality	10	
5.	Literature Review	10	
6.	Fulfillment of Plagiarism norms as per attached certificate	10	
7.	Publication of work	10	
8.	Potential Applications of the work /Social relevance	10	
Total out	of 80	•	

Thus, projectwill be assessed for 100 marks.

Alternative to Internship / Research Project in case of national emergencies like Covid pandemics:

In case of national emergencies like Covid pandemics, following alternative should be followed vide cited references:

References:

- 1. Letter no. UNI/2020/Baithak/vishi 1/4131A dt. 8th May 2020, Pg. no. 6, clause no. 5
- UGC Guidelines on Examinations and AcademicCalendar for the Universities in View of COVID-19Pandemic and Subsequent Lockdown dt. April 2020, pg. no. 6 and 7, clause no 10.

Alternative No. 1: Review article Alternative No. 2: Field work/Online Surveys related to needs of society having subject relevance/Book review

Note: Here, in case of national emergencies or lockdown period students are allowed to work from home and the work done under above titles will be considered for evaluation and grading purposes.

Explanation:

1. Review Article:

The criteria for awarding the marks are as follow:

Sr. No.	Criteria	
1.	Selection of the topic considering social relevance	
2.	Well organized abstract/ introduction	
3.	Survey of the topic selected as evidenced through references	
4.	Discussion of current developments in a selected field/ topic	
5.	Summarizing significant findings of the present study	
6.	Literature Review and the use of software like Mendeley to keep flexibility for	
	publication and referencing style.	
7.	Fulfillment of Plagiarism norms as per attached certificate	
8.	Publication of work	

Sr. No.	Criteria	
1.	Selection of the topic considering social relevance	
2.	Method followed for data collection	
3.	Statistical analysis of the data	
4.	Well organized abstract/ introduction	
5.	Reference work	
6.	Discussion of current developments in a selected field/ topic	
7.	Summarizing significant findings of the present study	
8.	Fulfillment of Plagiarism norms as per attached certificate	
9.	Publication of work	

2. Field work (Data Collection)/ Online surveys: having subject relevance

OR

3. Book review: having subject relevance

Sr. No.	Criteria		
1.	Name of the author and book with relevant details of publisher and publication		
2.	Relevant information about the author like who the author is and where he/she		
	stands in the genre or the field of enquiry.		
3.	Context of the book		
4.	Brief discussion about the theme of book		
5.	Strengths and weaknesses of the book		
6.	Highlighting parts of the book by selecting particular chapter/ theme for the		
	justification of review		
7.	Concluding remarks about books overall perspective, argument and purpose		
8.	Plagiarism check report		

Evaluation:

Internal evaluation for the alternative that is, submitting review article and field work /survey / book review will be carried out as follow:

Online presentations through central government approved apps				
Presentation based on review article (1)				
Presentation based on field work/ survey / book reviews (2 presentations each of 20 marks)				
Total marks				

IMP Note: The candidate has to submit the project report before the deadlines notified by the department. The candidate who fails to submit the project report may re-submit the same in a subsequent semester examination for evaluation purpose. The project work activities must be duly supported by documentary evidences and those should be endorsed by the HOD or the guide. All forthcoming UGC notifications regarding promotion of academic integrity and prevention of plagiarism in higher education institutions will be binding to the students. Submitted thesis by the students will be evaluated by, 'Departmental Academic Integrity Panel (DAIP)' and will be certified to be eligible for further evaluation as mentioned above. Award of the Grade will be based on the following criteria.

SHIVAJI UNIVERSITY, KOLHAPUR M. Sc. GENERAL MICROBIOLOGY SYLLABUS AS PER NEP 2020 PATTERN (To be implemented from June, 2023) (Applicable to affiliated colleges only)

PROGRAM OUTCOMES

- This is a two year M. Sc. program covering all general aspects of Microbiology.
- It helps in developing competent Microbiologists who can progress to diverse fields of microbiological interests in various fields of industries, research, teaching, medicalscience and entrepreneurship.
- The course is aimed at adding to the knowledge base of Microbiology graduates through significant inputs of latest information on the subject.
- It also envisages that the students read original research publications and develop the ability of critical evaluation of the study.
- Development of communication skills as well as laboratory work and team work, creativity, planning and execution are also a major objective of this program.
- In the core courses, the students study the basics of Microbiology along with the basics of subjects allied to and useful in Microbiology (Techniques, Biostatistics, Computer handling and Bioinformatics, Biosafety, Scientific writing and Agricultural and Clinical Microbiology).
- The specializations include topics on various fields of Industrial Microbiology, Fermentation Technology, Quality assurance, Recombinant DNA Technology and Pharmaceutical Microbiology.
- During this program students undertake a On job training, Research Project, field projects which the student is expected to study research methodology through experimental work, literature survey and report writing.
- In On job training, the student is to take training in the Industry for a period of at least two weeks which will help student to study Microbiological aspects in the Industry.
- Educational tour to various institutes and or industries provides actual microbiologicalapplications in various fields of Microbiology.

REVISED SYLLABUS FOR MASTER OF SCIENCE (M. Sc. Part-I): 1. Title: Subject: - GENERAL MICROBIOLOGY

Compulsory under the Faculty of Science

2. Year of implementation: New syllabus will be implemented from June 2023 onwards

Total number of semesters	: 02 (Per year)
Total No. of papers	: 06 (Per year)
Total no. of practical courses	: 04 (Per year)
Maximum marks per paper (Theory)	: 100
Distribution of marks (Theory only) –	
Internal evaluation	: 20
External evaluation	: 80
(Semester exam)	
Total marks for M. Sc. Degree Course	
Theory papers	: 1200
Practical course	: 550
Research Methodology	: 100
OJT / Field Project	: 100
Research Project	: <u>250</u>
	2200

3. Preamble: (Applicable to University affiliated college centers)

	Semester I	
Credits	MMT-101:Microbial Systematics	Lectures
	Core Compulsory Theory Paper	
	Total: 4 Credits; Workload: -15 hrs /credit	
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)	
	Course outcome:	
	1. To gain knowledge of systematics of bacteria	
	2. To understand new trends in systematics of bacteria	
	3. To learn different approaches bacterial systematics	
Ι	1. Species concept in prokaryotes and eukaryotes	15
-	2. Speciation concept	
	3. 5-Kingdom classification system	
	4. 3-Domain classification system	
	5. History and Approach of development of the Bergey's Manual,	
	and its current status	
	6. Polyphasic Approach	
	7. Molecular clocks, phylogeny and molecular distances	
II	8. Identification of microbes using conventional biochemical	15
11	methods and genome based tools.	15
	9. Nomenclature of microbes as per International Code of	
	Nomenclature of Prokaryotes (ICNP).	
	10. Nomenclature of microbes as per the SeqCode. Details about	
	Rule 30 and the reasons for developing the SeqCode.	
	11. Discussion and debate from a purely taxonomic perspective on	
	ICNP and SeqCode.	
	12. Concept of 'List of Prokaryotic names with Standing in	
	Nomenclature' (LPSN) and citing of LPSN.	
	13. Use of 'EzTaxon' for naming convention.	
III	14. Advances in Chemotaxonomy: the in-silico approach	15
	15. Molecular chronometers in phylogeny: single gene & multi-	
	gene sequence based microbial typing	
	16. Advances in Genome relatedness Indices:	
	• Various databases and their use in Whole genome	
	comparisons.	
	• Tree-building algorithms: distance-matrix methods,	
	minimum evolution, LS, maximum parsimony, maximum	
	likelihood and Bayesian inference	
	incentiood and Dayesian inference	
IV	17. Omics in microbial systematics	15
	Metagenomics	
	Metaproteomics	
	Metatranscriptomics	
	Metabolomics	
	18. Microbial culture collections, Nagoya protocol, NBA and the	
	National Biological Diversity Act for patenting of microbes.	
	19. Culture independent molecular methods for identifying	
	unculturable bacteria	
	• PCR	

• RFLP	
• ARDRA	
• DGGE	
• TGGE	
• RAPD	
• Microarray	
• FISH	
• RISA	
20. Strategies for exploring 'unculturable' bacteria	

Suggested References:

References:

1. Black J. G. (2013). Microbiology: Principles and Explorations. 6th Edition. John Wiley & Sons, Inc

2. Bromham L. and Penny D. (2003). The Modern Molecular Clock. Nat Rev Genet. 4(3): 216-224. Nature Publishing Group.

3. Brown J. (2014). Principles of Microbial Diversity. ASM Press.

4. Buchanan, R. E. and Gibbons, N. E. (editors). 1974. Bergey's Manual of Determinative Bacteriology. 8th ed. Williams & Wilkins Co., Baltimore

5. Garrity G., Boone D. R. and Castenholz R. W. (2001). Bergey's Manual of Systematic Bacteriology. Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria. 2nd Edition. Springer-Verlag NewYork

6. Garrity G., Brenner D. J., Krieg N. R. and Staley J. R. (2005). Bergey's Manual of Systematic Bacteriology. Volume Two: The Proteobacteria, Part A: The Gamma proteobacteria. 2nd Edition. Springer-Verlag US

7. Garrity G., Brenner D. J., Krieg N. R. and Staley J. R. (2005). Bergey's Manual of Systematic Bacteriology. Volume Two: The Proteobacteria. Part B: Alpha proteobacteria. 2nd Edition. Springer-Verlag US

8. Garrity G., Brenner D. J., Krieg N. R. and Staley J. R. (2005). Bergey's Manual of Systematic Bacteriology. Volume Two: Part C. the combination of the Beta-, Delta- and Epsilon proteobacteria. 2nd Edition. Springer-Verlag US

9. Krieg N. R., Ludwig W., Whitman W., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown, D. and Parte A. (Editors). (2010). Bergey's Manual of Systematic Bacteriology. Volume 4. 2nd Edition. Springer-Verlag NewYork

10. Oliver J. D. (2005). The Viable but Non-culturable State in Bacteria (2005). The Journal of Microbiology. 43: 93–100.

11. Pace N. (1997). A Molecular View of Microbial Diversity and the Biosphere. Science. 276: 734-740.

12. Pedersen A. G. Molecular Evolution: Lecture Notes. February

2005.http://www.cbs.dtu.dk/dtucourse/cookbooks/gorm/27615/lecturenoteboo k.pdf

13. Rappe M. S. and Giovannoni S. J. (2003). The Uncultured Microbial Majority. Annual Review of Microbiology. 57: 369 –394.

14. Sharma R., Ranjan R., Kapardar R. K. and Grover A. (2005). 'Unculturable' bacterial diversity: An untapped resource. Current Science. 89 (1):72-77

15. StaleyJ. T., Holt J. G., Bergey D. H., Bergey D. H., Williams S. T., Sneath P. H. A., Krieg N.R. and Holt J. G. (1994). Bergey's Manual of Determinative Bacteriology. Hong Kong: Williams & Wilkins.

16. Vartoukian S. R., Palmer R. M. and Wade W. G. (2010). Strategies for culture of 'unculturable' bacteria. Minireview. FEMS Microbiol Lett. 309:1-7.

17. Vining L. C. (1992) Roles of secondary metabolites from microbes. Ciba Found Symp.

171:184-194. discussion 195-8. doi: 10.1002/9780470514344.ch11. PMID:1302177. 18. Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. and William Whitman. (2005). Bergey's Manual of Systematic Bacteriology. Volume 3: The Firmicutes. 2nd Edition. Springer-VerlagUS

Whitman W., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M., Ludwig W., Suzuki K.-I. and Parte A. (Editors). (2012). Bergey's Manual of Systematic Bacteriology. Volume 5: The Actinobacteria. 2nd Edition. Springer-Verlag NewYork

20. Woese C. (1987). Bacterial Evolution. Microbiological Reviews.221-271.

21. Woese C. R. (2004). The archaeal concept and the world it lives in: a retrospective. Photosynthesis Research 80: 361 - 372. Kluver Academic Publishers.

MMT 102: IMMUNOLOGY

Total Credits: 04

Total Lectures: 60

Course Outcomes:

At the end of this course the students will be able to:

- 1. Understand classes of immunoglobulin, organization and expression of immunoglobulin genes.
- 2. Know details of major histocompatibility complex and disease susceptibility.
- 3. Understand cytokines and their medical significance.
- 4. Understand hypersensitivity reactions.
- 5. Know immunodeficiencies and auto immunity.
- 6. Understand details of transplantation immunology and immunity to cancer.

Credit	Semester	Lectures	
	MMT 102: IMMUNOLOGY		
	Core Compulsory Theory Paper		
	Total: 4 Credits; Workload: -15 hrs /credit		
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)		
	Course Outcomes:		
	At the end of this course the students will be able to:		
	1. Understand classes of immunoglobulin, organization and expression of immunoglobulin genes.		
	2. Know details of major histocompatibility complex and disease susceptibility.		
	3. Understand cytokines and their medical significance.		
	4. Understand hypersensitivity reactions.		
	5. Know immunodeficiencies and auto immunity.		

Ι	IMMUNOGLOBULINS:	15
	 Structure, classes & biological activities of immunoglobulins Organization & expression of immunoglobulin genes Genetic model compatible with Ig structure Multigene organization of Ig Genes. Variable region gene rearrangements Mechanism of Variable region DNA rearrangements Generation of Antibody diversity Expression of Ig Genes Regulation of Ig - Gene transcription. 	
II	MAJOR HISTOCOMPATIBILITY COMPLEX:	15
	 General Organization and Inheritance of the MHC MHC molecules and Genes Detailed Genomic Map of MHC genes Cellular Distribution of MHC molecules Regulation of MHC Expression. MHC and Immune Responsiveness MHC and Disease susceptibility 	
III	IMMUNE EFFECTOR MECHANISMS:	15
	 Cytokines – properties, receptors, antagonists, Cytokine secretion, related diseases, Therapeutic uses. Complement system - Functions, Components, activation, Regulation, Biological consequences, Deficiencies. Leukoyte Migration & Inflammation- Lymphocyte re- circulation, Cell Adhesion molecules, Neutrophils Extravasation, Lymphocyte Extravasation, Mediators of Inflammation, The inflammatory process, Anti inflammatory agents. 	
IV	TRANSPLANTATION IMMUNOLOGY: 1. Immunologic Basics of Graft Rejection.	15
	 Clinical manifestation of Graft rejection General Immunosuppressive Therapy Specific Immunosuppressive Therapy Clinical Transplantation VACCINES AND VACCINATIONS: New approaches to vaccine production International Standards for Evaluation of Antibody Response to Vaccines 	

References:

- 1. Cruse J and R. Lewis (2004) Atlas of Immunology 2ndEdn. CRC Press.
- 2. David Male, Jonathan Brostoff, David B Roth, Ivan Roitt.(2006).Immunology 7th edition.
- 3. Goldsdby R.A. Kindt T.S. and B.A. Osborne Kuby (2000) Immunology Fourth Edition W.H. Freeman & Co New York.
- 4. Reed R; Holmes D; Weyers J and A Jones (1998) Practical skills in Biomolecular Sciences Adison Wesley Longman Ltd.
- 5. Tizard; I.R. (1995) Immunology an Introduction 4thEdn. Saunders College Publishing. Harcourt Brace College Publishers.
- 6. Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai 10thEdn. (2022), Cellular and Molecular Immunology, ELSEVIER Publication.

MET 103 A: BIOCHEMISTRY

Total Credits: 4

Total Lectures: 60

Credit	Semester	Lectures	
	Core Commulation Theorem Danser		
	Core Compulsory Theory Paper Total: 4 Credits; Workload: -15 hrs /credit		
	(Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)		
	(10tal Workload 4 credits x 15 ms = 00 ms m semester)		
	Course Outcomes:		
	At the end of this course the students will be able to:		
	1. Understand basic concepts in biochemistry.		
	2. Understand structural features and chemistry of		
	macromolecules.		
	3. Know membrane transport mechanism in bacteria.		
Ι		15	
	THE SCOPE OF BIOCHEMISTRY:		
	i. What is Biochemistry?		
	ii. Goals of Biochemistry.		
	iii. The roots of Biochemistry.		
	iv. Biochemistry as a discipline and an		
	interdisciplinary science.		
	v. Biochemistry as a chemical science.		
	vi. Biochemistry as a biological science.		
	vii. New tools in Biological revolution		
	viii. The uses of Biochemistry.		
	BASIC CONCEPTS IN BIOCHEMISTRY:		
	 Common functional groups in biochemistry. OH, CHO, C = 0, NH2, C - NH2, SH, ester, ethers, methyl, ethyl, phospho, guanidio, imidazole etc). Common ring structures in biochemistry. 		

		. .	
		• Isomerism.	
		• Isotopes.	
		• Energetics.	
		• Redox systems.	
		• High energy compounds.	
	WATER:		
		ucture and properties.	
		• Water as a solvent.	
		• Ionization.	
		Ionic equilibrium.	
	STRUCTUR	RAL FEATURES AND CHEMISTRY OF	
	MACROMO		
	Nucleic acids		
	i.	Tautomeric forms of bases and their implication in	
	1.	pairing of bases.	
	ii.	Structure of polynucleotides, DNA structure, DNA and	
	11.	RNA (t -RNA, r- RNA, m- RNA etc).	
	iii.	Structure of DNA double helix.	
	iv.	R and L handed forms.	
	V.	A, B, C and Z forms of DNA.	
	vi.	Denaturation and Renaturation of DNA and Tm value.	
Π	Proteins:	Denaturation and Renaturation of D101 and 111 value.	15
	i.	Structural features of amino acids, classification of	10
	1.	amino acids, Amino acids as buffers,	
	ii.	Henderson Hasselbalch equation and its role in	
	11.	bufferformulation Peptide linkage, partial double bond	
		nature of peptide bond	
	iii.	Determination of primary structure of polypeptide (N-	
	111.	terminal,C-terminal determination, method of	
		sequencing of peptides),	
	iv.	Structural classification of proteins: primary, secondary,	
	1 .	tertiary, quaternary structures of proteins.	
	v.	Non-covalent interactions, Conformational properties	
	v.	ofproteins, Polypeptide chain geometry, Resonance	
		forms of thepeptide group, cis/trans isomers of peptide	
		group Ramachandranplot (Molecular visualization tools,	
		Uniprot).	
	vi.	Secondary, Super-secondary Motif & Domain.	
	vi. vii.	Tertiary and Quaternary structures of proteins,	
	v 11.	(Myoglobin &hemoglobin).	
	Membrane t	ransport :	
		Overview of membrane transport.	
		-	
	•	ATP powered pumps and intracellular ionic environment.	
		Non gated Ion channels and the resting membrane	
	•	Non gated ion channels and the resting membrane	
	•	potential.	

	 Co-transport – symport, antiport. Neurotransmitters. ATP driven active transport system for Sodium and Potassium ions. Proton gradient in <i>Halobacteria</i>. Transport of antibiotics that increase the ionic permeability of membranes. 	
III	Carbohydrates: L forms and D forms of sugar. Reducing and non reducing sugars. Aldoses / ketoses. Alpha and Beta, ring forms of sugars. Glycosidic linkages. Sugar derivatives – sugar alcohol, amino sugars, dextro sugars, sugaracids Polysaccharides (starch, glycogen, cellulose) 	15
IV	Lipids: • Fatty acids – Types and nomenclature. • Saturated and unsaturated fatty acids, • Structure and function of Triglycerides, Phospholipids, Sphingolipids. • Structure and function of steroids, terpenes, prostaglandins.	15

References:

- 1. Doelle, H.W. (1975) Bacterial Metabolism 2nd Edition Academic Press, Inc. N.Y.
- 2. Jayraman Laboratory manual in Biochemistry, New Age International publishers, New Delhi.
- 3. Lehninger A.L. (1984): Principles of Biochemistry, 1st Indian Edition, LBS publishers and distributors Pvt. Ltd. New Delhi.
- 4. Lehninger A.L. (2000) Principles of Biochemistry II Edition by D.KL. Nelson and M.M. Cox Mcmillan Worth Pub. Inc. N.Y.
- 5. Mehler H.R. (1968) Basic biological chemistry, Harper and Row publisher, Inc. New York.
- 6. Murray R..K., Harper's Biochemistry, Appleton and Lange Stanford, 25th Edition.
- 7. D. Plummer, J. Wiley & Sons Introduction to practrical Biochemistry by W.H. Freeman & Company publishers, SanFrancisco
- 8. Stryer, W.H. Freeman (1992) Biochemistry IV Edition and Co. N.Y.
- 9. Tood, H.S. Mason, J.T.V. Burger (1966). Text book of biochemistry, 4th Edition west E.S.W. R MacMillan Company, New York
- 10. West E.S., W.R. Todd, H.S. Mason. J.T.V. Burgger (1966) Text book of biochemistry, 4th Edition, MacMillan, New York.
- 11. White A., P. Handler. E.L. Smith (1973) Principles of Biochemistry, 5th Edition.
- 12. Wilson K. and J. Walker, (1999) Cambridge University Press. Principles and techniques at Practical biochemistry

MET-103 B MICROBIAL METABOLISM TOTAL LECTURES:60

TOTAL CREDITS:04

Credits	Semester	Lectures
	Core Compulsory Theory Paper Total: 4 Credits; Workload: -15 hrs /credit (Total Workload: - 4 credits x 15 hrs = 60 hrs in semester) Course Outcomes:	
	At the end of this course the students will be able to:	
	 Understand basic concepts of metabolism. Understand bioenergetics, aerobic respiration and anaerobic respiration. Know metabolism of carbohydrates, lipids and nucleic acids. 	
Unit I	BASICS OF MICROBIAL METABOLISM:	15
	 Catabolism Anabolism Types of metabolic reactions Methods employed to study metabolism. Metabolic control mechanisms. Control of enzyme levels. Control of enzyme activity. Compartmentation. Hormonal regulation. BIOENERGETICS: Membrane Potential Generation & maintenance. Energetics of proton motive force. Oxidation as a Metabolic enzyme source – Biological oxidations. Reductions. Oxidation - Reduction potential Redox couple. Nernst equation. 	
Unit II	AEROBIC RESPIRATION: 1. Bacterial Electron transport chain 2. Mitochondrial ETC – • Structure of mitochondria • Mitochondrial ETC	15
	 Shuttle systems across mitochondrial membrane. Citric acid cycle and oxidative phosphorylation. 	

	ANAEROBIC RESPIRATION:	
	 Concept. Sulfur Compounds, Nitrate & CO₂ as electron acceptors. ETC in SO₄ reducers and NO₃ reducers. 	
Unit III	 CARBOHYDRATE METABOLISM: Concept of fermentation with respect to - Homo & heterolactic, bacteria. Saccharolytic <i>Clostridia</i> & proteolytic <i>Clostridia</i>. Enzymes, intermediates, cofactors & regulation of glycolysis. Gluconeogenesis. HMP pathway. ED pathway. TCA cycle & glyoxylate bypass. Metabolism of - Starch. Glycogen. 	15
Unit IV	METABOLISM OF LIPIDS:	15
	 Fatty acid oxidation – stages and tissues. Oxidation of odd carbon chain fatty acid. Oxidation of unsaturated fatty acids – Alpha (α) Beta (β) Omega (ω). Biosynthesis of fatty acids. Synthesis of Triacylglycerols. Metabolism of phospholipids. NUCLEIC ACID METABOLISM: Synthesis and Catabolism of purines and pyrimidines – <i>De novo</i> biosynthesis. Regulation of steps. Purine degradation and clinical disorders of purine metabolism. Pyrimidine metabolism. Deoxyribonucleotide biosynthesis and metabolism. Inhibitors of nucleotide biosynthesis. 	

References:

- 1. Agarwal G.R., Agarwal O. P. Agarwal K. Text book of Biochemistry, Goel publishing house Meerut, 8th Edition 1995.
- 2. Conn, E.E. P.K. Stumpf, G. Bruening and R.H. Dol. (1995). Outlines of Biochemistry. 5th Edition John Wiley and Sons.
- 3. Doelle, H.M. (1975), "Bacterial metabolism". Academic Press Inc. Ltd. London.
- 4. Foster. R.L. (1980) The Nature of Enzymology Croon Helm Ltd. London.
- 5. Kachel. P. W. & G. B. Ralstion (2003) Schaum'southlines. Biochemistry II Edition. Tata McGraw Hill Edition.
- Lehininger. A. L; Nelson, M. M. Cox (1992) Principles of Biochemistry 2nd Edition, CBS Publishers and Distributors.
- 7. Mathews C.K., K.E. van Holde, Kevin G. Ahern, Biochemistry Third Edition (2003), Published by Pearson Education (Singapure) Ltd. Delhi.
- Palmer. T. (1995) Understanding enzymes. 4th Edition. Ellis Horwood Ltd. Publishers P. John Wiley & Sons. New York. Chichester, Brisbane Toronto.
- 9. Satyanarayana U. Biochemistry (2001) Books and Allied Pvt. Ltd., Calcutta.
- 10. Sheeler P, D. E. Bianchi (1987) Cell and Molecular Biology. Third, Edition, John Willey and sons.
- 11. Simpson R. J. (2004) Purifying Proteins for proteomics A laboratory manual Cold Spring Harbor laboratory press.
- Stanier. R.Y. J.N. Ingraham, M.L. Wheelis& P.R. Painter (1995) General Microbiology, 5th Ed. Mac Millan Press Ltd.
- 13. Stryer L (1995) Biochemistry, 4th Edition W.H. Freeman & Company New York.
- 14. Subbarao N.S. (1979), Recent advances in biological nitrogen fixation: Oxford & IBH Publishing Co. Private Ltd. New Delhi.

MET 103-C : ENVIRONMENTAL MICROBIOLOGY

Total Credits: 04

Total Lectures: 60

Credits	Semester	Lectures
	Course Outcomes:	15
	At the end of this course the students will be able to:	
	1. Understand concept of aeromicrobiology, biosafety and waste water management.	
	2. Understand bioremediation and biodegradation processes.	
	3. Know environmental laws.	
Unit I	ENVIRONMENTAL LAWS:	15
	1. Introduction	
	2. Environmental legislation in India	
	3. Legal aspects of waste treatment and disposal.	
	4. Notification relating to hazardous microorganisms and	
	genetically modified organisms.5. Rules for management of Bio medical wastes	
	5. Rules for management of Bio medical wastes	
	AEROMICROBIOLOGY:	
	1. Droplets, Droplet Nuclei and Bioaerosols	
	2. Sampling of bioaerosols	
	• Integral	
	• Size selective	
	• Passive	
	3. Bioaerosol control	
	Extramural Aeromicrobiology	
	Intramural Aeromicrobiology Constant Dathele sized effects of size pollution	
	General Pathological effects of air pollution.Biosafety in laboratory	
Unit II	WASTE WATER MICROBIOLOGY:	15
	1. Waste water types.	
	Characteristics.	
	• Nature of pollutants and their effects	
	• Microbial pollution and its effects.	
	2. Treatment.	
	• Principles of waste water treatment.	
	Disposal of waste water	
	Aerobic processes	
	a. Activated sludge process.	
	b. Fixed film systems.	
	c. High rate filters. d. Trickling filters	
	d. Trickling filters	

F	~	1
	e. Rotating biological contactors.	
	f. Fluidized bed reactors.	
	g. Oxidation ditch.	
	h. Aerated lagoons.	
	Anaerobic digestion	
	anaerobic lagoons.	
	• Biosorption – N and P removal.	
	Biofilms and kinetics	
	a. Root zone process.	
	b. Reverse osmosis.	
	c. Waste water disposal by	
	dilution.	
	• Difficulties encountered in operation of	
	different methods of waste treatment.	
	• Economics of waste treatment and feasibility.	
Unit III	BIOREMEDIATION:	15
	1. Bioremediation of Metals	10
	Metal toxicity effect on microbes	
	• Mechanisms of microbial resistance to metals,	
	metal -microbe interactions	
	 Methods to detect metal – microbe interactions 	
	Microbial remediation of metal contaminated soils	
	 Microbial remediation of metal contaminated 	
	aquatic systems	
	2. Bioremediation of petroleum	
	3. Bioremediation of waste gases	
Unit IV	BIODEGRADATION OF XENOBIOTIC AND INORGANIC	15
	POLLUTANTS:	
	1. Recalcitrant organic compounds and their presence	
	in natural ecosystem	
	2. Concept and Consequence of biomagnifications.	
	3. Biomagnification of hydrocarbons and pesticides.	
	4. Process of Biodegradation	
	5. Relationship between Contaminant Structure,	
	Toxicity and biodegradability	
	6. Environmental factors affecting biodegradability	
	7. Biodegradation of recalcitrant xenobiotic and toxic	
	compounds	
1	8. Recalcitrant Halocarbons	
	9. Recalcitrant Nitro aromatic compounds	
	9.Recalcitrant Nitro aromatic compounds10.Polychlorinated Biphenyl's	
	1	
	10.Polychlorinated Biphenyl's11.Radionuclide	
	10. Polychlorinated Biphenyl's	

References:

- 1. Arora. M.G. and M. Singh (1994) Industrial Chemistry Vol. I & II. Anmol Publications Pvt. Ltd.
- 2.Asthana D.K. and M. Asthana (2003) Environment Problems & Solutions. S. Chand and Co. Ltd. New Delhi.
- 3. Bathra Atlas (2007) Microbial Ecology Fundamentals and Application4th edition, Pearson Education Publication.
- 4. Agarwal A K, Q A Shammi, Purohit S S,(2007), Environmental Science A New Approach, AgrabiosJodhapur.(India)
- 5. De. A.K. (1994) Environmental Chemistry, New Age International (P) Limited, Publishers.
- 6. Gray. N.F. (2000) Water Technology. An Introduction for Environmental Scientists and Engineers. Viva Books Pvt. Ltd. New Delhi.
- 7. Jadhav H.V. (1992) Elements of Environmental Chemistry. Himalaya 9
- 8. Kormondy H.J(2007) Concepts of Ecology .fourth Edn .Pearson, Prentice Hall
- 9. Kumar A.(2005) Microbial pollution, APH Publishing house, New Delhi.
- 10. Katyal. T & M. Satake (1991) Environmental Pollution. Anmol Publishers Pvt. Ltd.
- 11. Khopkar S.M. (1993) Environmental Pollution Analysis Wiley Eastern Limited.
- 12. Maier R M , I L Pepler, C P Gerba (2000) Environmental Microbiology, Academic press.
- 13. Mukherjee N. and T. Ghosh (1995) Agricultural Microbiology. First Edition. Kalyani Publishers, New Delhi, Ludhiana, Hyderabad, Madras, Calcutta Cuttack.
- 14. Ranade D.R. and R.V. Gadre (1988) Microbiological aspects of anaerobic digestion. Laboratory Manual. Maharashtra association for cultivation of sciences
- 15. Rao. C.S. (1991) Environmental pollution control Engineering Wiley Eastern Limited New Delhi. Bangalore, Bombay, Calculta, Guwahati, Hyderabad, LukknowMadra&Pune..
- 16. S. C. Santra(2001) Environmental Science, New Central Book Agency, Calcutta.
- 17. Sharma B.K. and H. Kaur (1994). Water pollution Goel Publishing House Meerut..
- 18. Tripathi A.K. (1993) Understanding Environmental Disruption. Volume-I & II. Ashish Publishing House, New Delhi.
- 19. Trivedi R K (1998) Advances in Wastewater Treatment Technologies vol.1, Global Science, Aljgarh.
- 20. Verma, P.S and V.K. Agarwal (1996) Environmental Biology (Principles of Ecology) S. Chand & Co. New Delhi.

RM-106 Research Methodology

Total: 4	Total: 4 Credits Workload: -15 hrs /credit (Total Workload: - 4 credits x 15 hrs = 60 hrs in semester)		
Credits	Semester	Lectures	
creates	Course Outcomes:	15	
	At the end of this course the students will be able to:		
	At the end of this course the students will be able to:		
	4. Understand concept of aeromicrobiology, biosafety and waste		
	water management.		
	5. Understand bioremediation and biodegradation processes.		
	6. Know environmental laws.		
Credit I	Research and Research Methodology: Strategies and Planning	15	
	Introduction to research	10	
	• Objectives of research		
	• Motivation in research		
	• Basic types of research (Descriptive vs. analytical, applied		
	vs.fundamental, qualitative vs. quantitative and conceptual		
	vs.empirical)		
	Research approaches		
	Significance of research		
	Research Process:		
	Formulating the research problem		
	• Selecting the research problem.		
	Necessity of defining problem		
	• Technique involved in defining a problem		
	Extensive literature survey		
	• Search strategies (Methodology filters and PubMed filters)		
	• Quality of bibliographies/reference lists.		
	• Impact factor to assess research quality.		
	• Principal Bibliographic databases (PubMed, OldMedline,		
	Cochrane Library, EMBASE, BIOSIS Previews, PsycINFO and ISI Web of Science).		
	Preparing the research design		
	Need for research design		
	Features of good design		
	Important concept relating to research design		
	Different research designs.		
	 Basic principles of experimental designs. 		
	 Classification of experimental designs (Informal and Formal 		
	experimental design).		
	Determining the sample design		
	• Steps in sample design		
	• Criteria of selecting a sampling methods/procedure.		
	• Different types of sample designs (non-probability and		
	probability sampling).		

	• Complex random sampling designs (Systematic sampling,	
	stratified sampling, area sampling, quota sampling, cluster	
	sampling, multi-stage sampling and sequential sampling).	
Credit 2	Research Data Collection and Analysis	15
Credit 2	Collecting the data	15
	• Data types, Repeatability, Reproducibility and Reliability,	
	Validity (concept validity, internal validity and external validity)	
	• Methods of collecting primary data: Observation method,	
	Interview method, through questionnaires, through schedules and	
	other methods.	
	• Methods of collecting secondary data: Case study method.	
	• Measurement scales (nominal, ordinal, interval and ratio)	
	Analysis of data	
	• Data presentation by Tables and Graphs (Histogram, bar, pie and line)	
	• Measures of central tendency – Mean, Mode, median	
	• Measures of dispersion – Mean deviation, Standard deviation and	
	Variance	
	Hypothesis testing	
	• The concepts of null hypothesis and alternative hypothesis	
	• P-value significance level	
	• Type I and type II errors	
	• One tailed and two tailed tests	
	 Degrees of freedom Tests of hypothesis (Parametric tests : z-test, t-test, and F test) 	
	• Tests of hypothesis (Farametric tests : 2-test, t-test, and 1 test)	
Credit 3	Ethics in Biological Research	15
	Introduction to Research ethics	
	• Ethical theories and frameworks i) Consequentialismii)	
	Deontological ethics iii) Virtue ethics.	
	• Basic principles of human research ethics.	
	• The ethics of animal research	
	International regulationsBasic principles for all medical research	
	 Rules for basic medical research projects 	
	 The role of research ethics committees 	
	Scientific conducts and Misconducts	
	• Characterization of scientific work by three norms 1) Internalnorms	
	2) Linkage norms 3) External norms.	
	Fabrication of data Plagiarism	
	• Authorship issues (Exclusion from authorship, Giftauthorship,	
	Authorship achieved by coercion and Unsolicited	
	authorship)	
	• Duplicate publication	
	Publication bias	
	• Other form of misconducts	
	• The investigation and punishment of scientific misconduct.	

Credit 4	Essentials of Scientific Writing	15
	Research Communications:	
	• Purpose of science communication	
	• Requirement of producing publications.	
	• Choosing a journal for publications.	
	Writing of Scientific Papers:	
	• Characteristics of a good scientific paper	
	• Structure of Research paper: Title, Authors, Abstract,	
	Introduction, Materials and methods, Results, Discussion,	
	Conclusions, Acknowledgements and References, Citation	
	ofreferences (textual citations and order of references),	
	Listingreferences, foot notes and End notes, Figures, tables, captions	
	andequations, Units of measurements.	
	• Planning of Research paper writing: The first draft of	
	researchpaper, Revising the first draft, the second draft, the third	
	draft, checking of references, figures and tables, proofreading	
	andreporting statistics in the final manuscript. Style and language of	
	research papers	
	• Style and language of research papers	
	Review Articles	
	• Kinds of reviews	
	• Literature search	
	• Writing a review article: Introduction, Description of theliterature	
	review, Headings in the middle review,	
	Conclusions, Recommendations, Acknowledgement and References.	
	Handling of negative results	
	Purpose of Peer reviewing	
	Most common reasons of research papers rejections	
	Research papers Publishing ethics :	
	• Using other's words or data (Plagiarism)	
	• Not reporting other's work	
	• Putting your name on work you did not carry out	
	• Double publishing	
	• Multiple submissions	
	• Publishing the same results many times	
	• Failing to obtain approval from authors	
	• Authorship	
	• Copyright	
	• Data fabrication	
	• Fraud or error	
	• Conference and Journal publishing	
	Fraudulent research : Fabrication, falsification, plagiarism, failure	
	toGAdisclose conflict of interest, inefficiency, anonymity	
	Poster preparation	

REFERENCES:

1. Laake, P., Benestad, H. B., & Olsen, B. R. (Eds.). (2007). *Research methodology in the medical and biological sciences*. Academic Press.

2. Kirub, A. (2014). Essentials of scientific writing. ISBN: 978-99944-53-98-6

3. Amin S Bredan and Frans van Roy. 2006. Writing readable prose. MBO reports 7,1 846 – 849

4. Anderson PV. 1991. Technical Writing, a reader-centered approach, 2nd edition, Harcourt Brace Jovanovich.

5. Brooke Crutchley. 1970. Preparation of manuscripts and correction of proofs. Cambridge University Press.

6. Hath EJ. 1990. How to Write and Publish Papers in the Medical Science, 2nd ed. Williams &Wilkms; Baltimore.

7. James DL, JD Lester.2010. Writing research papers. A complete guide.13th edition.

8. Jean-Luc Lebrun. 2007. Scientific writing: a reader and writer's guide. World Scientific Publishing.

9. Cohen J (1993) HH: Gallo guilty of misconduct. Science 259: 168–170.

10. Tranoy KE (1988) Science and ethics. Some of the main principles and problems. In: Jones AKI (ed.) The Moral Import of Science. Essays on Normative Theory, Scientific Activity and Wittengenstein. Sigma, Bergen, pp. 111–136.

11. Tranøy KE (1996) Ethical problems of scientific research: an action-theoretic approach. The Monist 79: 183–196.

12. Nuffield Council on Bioethics (2005) The ethics of research involving animals – a guide to the report. Nuffield Council on Bioethics, London.

13. Russell WMS, Burch RL (1959) The Principles of Humane Experimental Technique.

Methuen, London, available at: http://altweb.jhsph.edu/publications/humane_exp/hettoc.htm

14. Jennifer Peat. 2008. Scientific writing: easy when you know how. BMJ Books

15. Scott EM, Waterhouse JM (1986) Physiology and the Scientific Method. Manchester University Press, Manchester.

16. Garfield E (2006) The history and meaning of the journal impact factor. JAMA 295: 90–93.

17. Pitkin RM et al. (1999) Accuracy of data in abstracts of published research articles. JAMA 281: 1110–1111.Irfan Ali Khan and AtiyaKhanum, Fundamentals of Biostatistics. 3rd Ed. Ukaaz, Publications, Hyderabad.

18. Bernard Rosner Fundamentals of Biostatistics,5th Ed. Duxbury Thomson

UNITS	Semester	CREDITS
	Course Outcomes: At the end of the practical course, students will	
	learn,	
	1. Operating of high end laboratory instruments	
	2. Basic practical skills in Biochemistry	
	3. Basic practical skills in Immunology	
	4.	
Ι	INSTRUMENTATION & BIOCHEMISTRY	1
	 Study of different instruments in the laboratory. Laminar airflow, Microfuge, UV. Spectrophotometer, Incubator shaker, Cooling incubator, Deepfreeze, colorimeter, pH meter, lyophilizer (visit). Laboratory Safety. 	
	 Preparation of buffers and molar solutio Estimation of protein by Lowry's / Biuret method. Separation & identification of amino acids, carbohydrates by TLC. 	
II	 5. Estimation of reducing sugars by DNSA. 6. Estimation of lipids / fats 7. Study and justification of Deer Lombert's law 	1
	7. Study and justification of Beer Lambert's law.	
III	Blood transfusion related techniques.	1
	Blood grouping.	
	Cross matching.	
	• Visit to blood bank.	
	Applications of Immunology	
	Demonstration / visit.	
	a) RIA	
	b) ELISA	
	Study of vaccination schedule.	
IV	Study of Immunological reactions. (to be conducted in the	1
. •	laboratory of the institution)	*
	Immunoelectrophoresis-	
	Purification of Immunoglobulin-	
	Ammonium Sulphate precipitation	
	Haemagglutionation Inhibition Test	
	• Immunodiffusion	
	Rapid NS1 Antigen Test	

MMPR- 104 PRACTICAL COURSE-1

References:

- Alberts. B.; Johnson. A, Lewis J. Raff, M. Roberts. K. and P. Walter (2002) Molecular Biology of the cell 4th Edition. Garland Science, Taylor & Francis Group.
- 2. Benjamin Cunnings publishing Co. Inc. 2nd Edition
- 3. Boyer. R. (2000) Modern Experimental Biochemistry. 3rd Edition. Pearson Education Asia.
- 4. Cruse J and R. Lewis (2004) Atlas of Immunology 2nd Edn. CRC Press
- 5. Elliott. W.H. and D.C. Elliot (2001) Biochemistry and molecular Biology. 2nd Edn. Oxford University Press.
- 6. Hand book of experimental immunology Vol. I by PM. Weinor (editor) 1978. Black Well scientific publications.
- 7. Jayraman Laboratory manual in Biochemistry, New Age International. Publishers, New Delhi
- 8. Mathews C.K. and K.E. Van Holde (1996) Biochemistry. The Benjamin Cunnings publishing Co. Inc. 2nd Edition
- 9. Plummer D.T, (1992)An introduction to Practical Biochemistry Tata cGraw Hill Publisher,New Delhi
- 10. Reed, R; Homes, D; Weyers, J. and A. Jones. Practical skills in Biomelecular Sciences. Addison Wesley Longman Limited.

UNITS	Semester	CREDITS
	Course Outcomes:	
	At the end of this course the students will be able to:	
	 Use basic softwares for bacterial systematics Cultivate extremophiles. Conduct experiment for detection of pollution strength. 	
I	Basic skills in Microbial Systematics:	1
	1. 16s RNA Fragment Analysis using 'Sequence Scanner Software'	
	2. Contig generation using ChromasPro	
	3. Fragment analysis and assembly using SeqMan Software	
	4. Study of closest match of bacterial genome using Ez. Taxon Database	
	5. Study of closest match of bacterial genome using NCBI Database	
	6. Study of closest match of bacterial genome using RDP Database	
	7. Demonstration of MEGA Software	

MEPR- 105 PRACTICAL COURSE-II

Guidelines	
Practicals of the Mic	crobial Systematics have been designed with
the objective of provi	iding students with comprehensive experience
in comparative geno	omics, taxonomic analysis, and phylogenetic
reconstruction using	bioinformatics tools, including BLAST, the
List of Prokaryotic	Names with Standing in Nomenclature
(LPSN), and phyloge	eny tools. Students will learn how to analyze
DNA sequences, per	form sequence alignments, assign taxonomic
names, and reconstru	ct phylogenetic trees.
Materials and Equip	ment:
	or laptop with internet connectivity
-	Alignment Search Tool) software or access to
the NCBI BLAST web	bsite (blast.ncbi.nlm.nih.gov)
LPSN website (www.l	
	as Chromas, MEGA or PhyML (software or
online tools)	
Procedure:	
Introduction to Con	mparative Genomics, Taxonomic Analysis,
and Phylogeny (1 ses	sion):
Provide an overview	of comparative genomics, its significance in
microbial taxonomy, a	and the construction of phylogenetic trees.
Explain the use of	BLAST, LPSN, and phylogeny tools as
bioinformatics resour	ces for taxonomic analysis and phylogenetic
reconstruction.	
Discuss the importance	e of DNA sequence alignment and evolutionary
relationships in unders	standing microbial taxonomy.
Sequence Retrieval a	and Preparation (1 session):
Instruct students on h	now to search for and retrieve DNA sequences
from public databases,	, such as GenBank or NCBI.
Explain the importa-	nce of selecting appropriate sequences for
•	d phylogenetic reconstruction.
Guide students in do	ownloading and organizing the sequences for
further analysis.	
BLAST Analysis (2-	3 sessions):
Provide a demonstrat	ion of the BLAST tool and its functionalities.
Guide students in per	rforming sequence alignments using BLAST
against relevant datab	bases.
•	how to interpret BLAST results, including
	E-values, and alignment scores.
1	tifying the most closely related taxa based on
the BLAST results.	
	nent using LPSN (1-2 sessions):
0	with the LPSN website and its resources.
	how to search for taxonomic information
matuce sequents off	now to search for taxonomic information

using LPSN.		
e	igning taxonomic names to their sequences	
	results and LPSN information.	
	as and challenges of taxonomic assignment	
using genomic data.		
	truction (2-3 sessions):	
Introduce students to p	phylogeny tools such as MEGA or PhyML.	
Guide students in alig	gning the DNA sequences and constructing	
phylogenetic trees us	sing appropriate methods (e.g., maximum	
likelihood or neighbor	-joining).	
Instruct students on ho	by to interpret and visualize the phylogenetic	
trees.		
Discuss the significan	ce of evolutionary relationships revealed by	
the phylogenetic trees.	• • • •	
Data Analysis and Re		
	anizing and analyzing their BLAST, LPSN,	
and phylogenetic result		
1,5,6	summarizing their findings and drawing	
	e taxonomic affiliations and phylogenetic	
relationships of their s	A	
	aring a comprehensive report detailing their	
methodology, results,	and conclusions.	
Assessment:		
1 1	nd engagement during practical sessions.	
• •	teness of BLAST analysis, LPSN taxonomic	
0 1	ogenetic reconstruction. phylogeny tools for sequence alignment and	
tree construction.	phylogeny tools for sequence angliment and	
	port, including data analysis, interpretation,	
and conclusions.	port, meruanig and analysis, morpretation,	
	o provide clear instructions on data retrieval,	
-	, the use of BLAST and LPSN, and	
	truction. Familiarize students with the	
	rmatics tools and the challenges associated	
e e	nments and phylogenetic analysis based on	
-	courage critical thinking, independent	
	ctive communication of scientific findings	
throughout the practicalII1. Cultivation of Extrema		1
• Acidop		T
Actuop Alkalop		
Haloph		
÷	the extremophile isolates using 'Bergey's	
Manual of Systematic		
•	ion by aerobic and anaerobic	
microorganisms.		
4. Determination of B		

References:

- 1. Bathra Atlas (2007) Microbial Ecology Fundamentals and Application4th edition, Pearson Education Publication
- 2. Kormondy H.J(2007) Concepts of Ecology .fourth Edn .Pearson, Prentice
- 3. Maier R M, I L Pepler, C P Gerba (2000) Environmental Microbiology,
- 4. Krieg, M. R. and J. G. Holt (Editors) (1984) Bergey's Manual of Systematic Bacteriology. Vol I Williams and Wilkins, Baltimore, London, Tokyo
- 5. Sharma B.K. and H. Kaur (1994). Water pollution Goel Publishing House Meerut.
- 6. Sneath, P. H. A. Mair: N. S. Sharpe: M. E. and J. G. Holt (Eds) (1986). Bergey's Mannual of Systematic Bacteriology Vol. II Williams and Wilkins, Baltimore, London, Tokyo.
- 7. Staley, J. T. Bryant: M. P. Penning: N and J. G. Holt (Eds) (1989) Bergey's Mannual of Systematic Bacteriology Vol. III Williams and Wilkins, Baltimore, London, Tokyo.
- 8. Skinner,(1987)Bacterial Systematics Academic Press.
- 9. Cappucino& Sherman (2004) Microbiology a laboratory mannual 6thEdn. Pearson Education, New Delhi.
- 10. Tripathi A.K. (1993) Understanding Environmental Disruption. Volume-I & II. Ashish Publishing House, New Delhi.
- 11. Trivedi R K (1998) Advances in Wastewater Treatment Technologie vol.1, Global Science, Aljgarh
- 12. Williams, S. T. Sharpe: M. E. and J. G. Holt (Eds) (1989) Bergey's Mannual of Systematic Bacteriology. Vol. IV Williams and Wilkins, Baltimore, London, Tokyo.
- 13. MEGA SOFTWARE through https://www.megasoftware.net

	Semester II	1
MMT 201	GENETICS AND MOLECULAR BIOLOGY (4Cr)	60 Hrs
CREDIT	 Origin of life- aspects of prebiotic environment, evolution of the pre-cell. Organic evolution: concepts and theories, mechanisms of speciation, genetic basis of evolution - Hardy-Weinberg genetic equilibrium, evolutionary clock. Molecular basis- genetic polymorphism and selection, coincidental and concerted molecular basis, gene duplication, sequence divergence, recombination and crossover fixation, pseudo-genes as dead ends of evolution Origin and evolution of economically important microbes, plants and animals. Evidences for nucleic acids as genetic material. 	15 Hrs
	6. Organization of eukaryotic genetic material: Operon, Unique and repetitive DNA, Interrupted genes, gene families, structure of chromatin and chromosomes, heterochromatin and euchromatin. Polytene and Lampbrush chromosomes.	
CREDIT II	 Principles of Mendelian inheritance: linkage and gene mapping - Tetrad analysis, split and overlapping genes. Law of DNA constancy and redundancy, C-value paradox, Cot curves and DNA re-association constant, dosage compensation, genetic load. 	15 Hrs
	 Molecular basis of mitosis and meiosis Replication of DNA and duplication of chromosomes – modes and 	
	molecular mechanisms of DNA replication in prokaryotes (bacteria) and eukaryotes (nuclear and mitochondrial).	
	5. Co-transcriptional and post-transcriptional processing of RNA, structure and stability of Mrna	
CREDIT III	1. Translation in eukaryotes – machinery, initiation, elongation, termination and release, posttranslational processing.	15 Hrs
	2. Localization of proteins in cell - mechanisms of transport to nucleus, mitochondria, chloroplasts and outside the cell	
	3. Molecular mechanism of homologous recombination in bacteria and other organisms – RecBCD and Ruv systems, Holliday junction, interallelic, specialized and site specific recombination; Gene targeting.	
	4. Restriction and modification of DNA – enzymes, molecular mechanisms and significance.	
CREDIT IV	1. Teratogenesis- chromosome aberrations, genetic disorders; Genetic counseling.	15 Hrs
	 Cancer and oncogenesis: Transforming viruses, environmental factors causing cancer - carcinogens Molecular mechanism and sequence of changes leading to oncogenesis - mutations, activation of proto-oncogenes, loss of function of tumour suppressor (anti-cancer) genes, role of apoptosis and telomere shortening in cancer. 	

Semester II

3. Techniques in molecular genetics:
3.1 Basic techniques - PCR, LCR, Nick translation, Blotting techniques – Southern, Northern and Southwestern blotting, colony hybridization
3.2 Applications - Chromosome walking, DNA foot printing and 16s rRNA sequence analysis
3.3 Transfection – Protoplast fusion, electroporation

REFERENCE BOOKS

1. Molecular Biology of the Cell by Alberts and others, Garland Publishing, NY.

- 2. Concept of Evolution by P. S. Verma and V. K. Agarwal, S. Chand and Co., New Delhi
- 3. Organic Evolution by N. Arumugam
- 4. Organic Evolution by R. S. Lulla, Seema Publications
- 5. Genetics by Strickberger
- 6. Microbial Genetics by D. Freifelder, J. Wiley and Sons
- 7. Genes VI, VII, VIII and IX by B. Lewin, Jones and Bartlett Publishers
- 8. Molecular Biology of the Gene by J. D. Watson and others, Benjamin

CummingsPublishing Co.

9. Genetics by S. Mitra, Macmillan India

10. Genetic Engineering by S. Mitra, Macmillan India

11. Molecular Biology and Biotechnology by J. M. Walker and R. Rapley, Panima Publishing Corp. New Delhi

12. Molecular Biology by P. C. Turner and others, Bioscientific Publishers

13. Principles of Genetics and Genetic Engineering by E. John Jothi Prakash, JPR Publications

14. Principles and Techniques of Practical Biochemistry by K. Wilson and J. Walker, Cambridge University Press

15. Molecular Cloning – A Laboratory Manual, Vol. 1, 2, 3 by J. Sambrook, E. F. Fritsch and T. Maniatis

16. An Introduction to Genetic Analysis Freeman 1993

17. Molecular Gebetics of Bacteria by L. Snyder and W. Champness, ASM Press, Washington

MMT 202	FERMENTATION TECHNOLOGY (4Cr)	60 Hrs
CREDIT I	Fermentation equipment and its use:	15 Hrs
	1. Basic functions of a fermenter, body construction, aeration, Agitation, baffles, etc.	
	2. Design of other fermentation vessels: Airlift fermenter, tower fermenter Continuous fermenter, fed batch fermenter, Waldhof type fermenter	
	3. Sterilization of fermentation equipment, air and media	
	4. Fermentation broth rheology and power requirements, concepts of Newtonian and non-Newtonian fluids, plastic fluids, effect of rheology on heat and oxygen transfer, Reynold's number, power number, aeration number and apparent viscosity	
CREDIT II	1. Fermentation media- Types of fermentation media, sources of carbon, nitrogen trace elements, growth factors, precursors, buffers, antifoam agents, sterilization of media, screening for fermentation media.	15 Hrs
	2. Fermentation economics – A case study, market potential for product and fermentation, product recovery cost, Entrepreneurship, plan for industry, product selection process, site selection, finance, feasibility, excise and legal aspects	
	3. Patents – Introduction, composition of patent, background, patent practice and problems	
CREDIT III	 Environmental control of metabolic pathways Genetic Control of Metabolic pathways 	15 Hrs
	3. Growth and product formation: Concept of primary and secondary metabolites and their control,kinetics of growth and product formation (growth rate, yield coefficient, efficiency), economics	
	4. Contamination problems in fermentation industry	
	5. Computer applications in fermentation technology- General applications and specificapplications	
CREDIT IV	Industrial production of:	15 Hrs
	1. Lactic starter culture for food fermentations	
	2. Vitamin- B12	
	3. Gluconic acid	
	4. Distilled alcoholic beverages – Whisky and Brandy	
	5. Bacterial vaccines	

REFERENCE BOOKS

1. Industrial Microbiology by L. E. Casida, John Wiley and Sons INC

2. Annual Reports on Fermentation processes Vol. I and II by D. Perlman, Academic pressINC

3. Prescott and Dunn's Industrial Microbiology, 4th edition (1982) by Gerald Reed

4. Food processing: Biotechnological applications by S. S. Marwaha and J. K. Arora (2000), Asiatech publishers INC

5. Microbial technology Vol. I and II by H. J. Peppler and D. Perlman Academic Press INC

6. Principals of Fermentation Technology by P. Stanbury and A. Whitaker, Pergamon Press

7. Essays in Applied Microbiology by J. R. Norris and M. H. Richmond, John Wiley and Sons, Chicester, New York

8. Biology of Industrial Microorganisms by A. Demain and N. Solomon Butterworths Biotechnology Series

9. Overproduction of Microbial Metabolites: Strain Improvement and Process Control strategies by Z. Vanek and Z. Hostalek Butterworths Biotechnology Series

10. Fermentation Microbiology and Biotechnology by E. M. T. El-Mansi and C. F. A. Bryce Taylor and Francis Ltd. London

11. Legal protection for Microbiological and Genetic Engineering Inventions by R. Saliwanchik Butterworths Biotechnology Series

12. Methods in Industrial Microbiology by B. Sikyta, Ellis Horwood Ltd. Chichester (1983) Industrial Microbiology by A. H. Patel, MacMillan India Ltd.

13. Principals of fermentation technology by P. Stanbury and A. Whitaker, Pergamon Press 14. Advances in Applied Microbiology Vols. 9 and 13, by W. W. Umbreit, Academic Press, New York

15. Essays in Applied Microbiology by J. R. Norris and M. H. Richmond, John Wiley and Sons, Chicester, New York.

MET 203-A	TECHNIQUES IN MICROBIOLOGY (4Cr)	60 Hrs
CREDIT I	1. Enrichment culture techniques – principles and selective factors	15 Hrs
	employed, enrichmentsystems - closed and open, single cell isolation	
	methods	
	2. Principles and methods of preservation of bacteria, viruses, yeasts and	
	molds	
	3. Isolation and cultivation of anaerobes – principles, reducing agents,	
	indicators, anaerobic jarmethods and anaerobic glove box, Hungate's	
	roll tube technique and its serum bottle modification.	
	4. Isolation of human and animal pathogenic fungi5. Microscopic techniques –	
	5.1 Electron microscopy – principles and working of transmission and	
	scanning microscopes.	
	0 1	
	5.1 Dark field, phase contrast, polarisation, differential interference contrast (DIC),fluorescence, confocal scanning, scanning tunnelling,	
	atomic force microscopy.	
CREDIT II	1. Good laboratory practices:	15 Hrs
	1.1 Accuracy in preparation of solutions, media, etc.	15 115
	1.2 Qualifications of equipment – design (DQ), installation (IQ),	
	operational (OQ) and performance (PQ)	
	1.3 Validation and calibration	
	1.4 Documentation- Concepts, necessity and types	
	2. Safety in the laboratory:	
	2.1 Common hazards in the laboratory –	
	2.1.1 Electrical equipment	
	2.1.2 Chemicals – corrosive, irritant, toxic, flammable, explosive	
	2.1.3 Ionising radiations	
	2.1.4 Infectious materials	
	2.1.5 Gas and fire	
	2.2 Safety measures –	
	2.2.1 In the use of equipments and gas facility	
	2.2.2 Personal protection	
	2.2.3 Waste disposal	
	2.2.4 First aid	
	3. Cell disruption methods – principles and methods of disruption of	
	microbial, plant and animal cells and separation of cellular components	
CREDIT III	1. Chromatography – general principles and working of	15 Hrs
	1.1 Column chromatography – gel, ion exchange.	
	1.2 Gas chromatography	
	1.3 HPLC	
	2. Electrophoresis-	
	2.1 Polyacrylamide gel electrophoresis (PAGE) - native and gradient	
	gels, DNA Sequencinggels, SDS-PAGE, isoelectric focusing, 2-D	
	PAGE	
	2.2 Agarose gel electrophoresis- DNA gel, Pulsed field gel, RNA	
	electrophoresis.	
	2.3 Capillary electrophoresis	
	3. Centrifugation – principles of differential and density gradient	
	centrifugation, sedimentation coefficient determination	

CREDIT IV	 Spectroscopy – Principles of IR and Raman spectrophotometry, turbidimetry andnephelometry, fluorimetry, luminometry, circular dichroism and optical rotational dichroismspectrophotometry, ESR,NMR Mass spectrometry X – ray crystallography Radioisotopic techniques – 1 Nature of radioactivity and general principles of radioisotopic techniques 2 Methods of detection of radioactivity – gas ionization (GM counter), excitation(scintillation) and exposure of photographic emulsions (autoradiography). Methods of using radioisotopes – radioisotope tracer technique, isotope dilution assay(RIA) and other methods 	15 Hrs
	 excitation(scintillation) and exposure of photographic emulsions (autoradiography). 4.3 Methods of using radioisotopes – radioisotope tracer technique, isotope dilution assay(RIA) and other methods 	
	5. Electrochemical techniques – general principles of electrochemical cells and potentiometry,principles and applications of the pH, ion selective and oxygen electrodes	

REFERENCE BOOKS

- 1. Methods in Microbiology (series) by Norris and Ribbons, Academic Press, NY.
- 2. Principles and techniques in Practical Biochemistry by K. Wilson and J. M. Walker
- 3. Research Methodology for Biological Sciences by N. Gurumani, MJP Publishers, Chennai
- 4. Bioinstrumentation by L. Veerakumari, MJP Publishers, Chennai
- 5. A manual of Laboratory Techniques by N. Raghuramulu and others, NIN, Hyderabad
- 6. Microbiological aspects of Anaerobic Digestion Laboratory Manual by D. R. Ranade and
- R. V. Gadre, MACS, Agharkar Research Institute, Pune
- 7. Isolation Methods for Anaerobes by Shapton, Academic Press.
- 8. Tools in Biochemistry by D. Cooper
- 9. Protein Purification by R. Scopes, Springer Verlag Publications

10. Analytical Biochemistry (Biochemical Techniques) by P. Asokan, Chinnaa Publications

MET 203-B	QUALITY ASSURANCE AND VALIDATION IN PHARMACEUTICAL SECTOR (4Cr)	60 Hrs
CREDIT I	Drug designing and development	15 Hrs
	Introduction to drug design, computer aided drug design, molecular modeling in drug design – structure-based drug design. General approach in novel drug discovery- new Lead molecule discovery–Lead molecule optimization, Lead molecule modifications–ADME properties of new drug molecule. Mechanism of drug action and its physiochemical principles- drug stereo chemistry, structure activity relationship.	
	Comparative modeling of proteins–comparison of 3D structure – Homology – steps in homology modeling – tools (Modeler) –side chain modeling – loop modeling. 3D structure databases–molecular docking – (Auto Dock).	
	Introduction to energy minimization, MD simulation, Setting up MD (System preparation- parameter files), equilibration, Analysis of MD-RMSD, RMSF, Radius of gyration.	
CREDIT II	Microbial synthesisof pharmaceutical productsand spoilage	15 Hrs
	Manufacturing procedures and in process control of pharmaceuticals products. Production of pharmaceutical products- by using microbial fermentations (Streptokinase, Streptodornase). Development of new vaccines- DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines, recombinant vaccine. Vaccine efficacy testing and its clinical trials. Microbial contamination and spoilage of pharmaceutical products (sterile injectables, non-injectables, ophthalmic preparations and implants) and their sterilization.	
CREDIT III	Quality assurance and product validation	15 Hrs
	Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP) in pharmaceutical industry. Quality assurance and quality management in pharmaceuticals ISO 9000, series, practices of GMP WHO, and US certification. Drug stability: parameters for physical stability testing, solution stability, solid stability. Sterilization control and sterility testing (For heat sterilization, TDP, TDT, D value, F value, z value, survival curve, Radiation, gaseous and filter sterilization (Mention Tests). Chemical and biological indicators. Design and layout of sterile product manufacturing unit Designing of Microbiology laboratory, Industrial Safety: Assessment of risk, Industrial hazards and their prevention, fire, accidents, mechanical and electrical equipment's, industrial effluent testing, laboratory standards-(BL- 6). Records and documentations: Records related to products release, Quality review, and Quality audits. Complains and recalls.	
CREDIT IV	Intellectual property rights and regulatory practices in pharma industries:	15 Hrs
	Intellectual property rights, Introduction to patents. Regulatory aspects of quality control of pharmaceutical products. IP, BP, USP. Government regulatory practices and policies, FDA perspective. Reimbursement of drugs and biologicals, legislative perspective. Biosensors in Pharmaceuticals (Cholesterol oxidase). Application of microbial enzymes in pharmaceuticals.	

References

1.Quality control in the Pharmaceutical Industry - Edt. by Murray S.Cooper Vol.2. Academic Press New York.

2. Sidney H Willing, Murray M, Tuckerman. Williams Hitchings IV, Good manufacturing of pharmaceuticals (A Plan for total quality control) 3rd Edition. Bhalani publishing house Mumbai.

3. Quality Assurance of Pharmaceuticals- A compedium of Guide lines and Related materials Vol I & II, 2nd edition, WHO Publications, 1999.

4. Good laboratory Practice Regulations – Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989.

5. The International Pharmacopoeia – vol I, II, III, IV & V - General Methods of Analysis and Quality specification for Pharmaceutical Substances, Expedients and Dosage forms, 3rd edition, WHO, Geneva, 2005

MET 203-C	MICROBIAL ECOLOGY (4Cr)	60 Hrs
CREDIT I	1. Concept and importance of microbial ecology.	15 Hrs
	2. Microbial communities and ecosystems - Development of microbial	
	communities, Experimental Ecosystem models – Batch system, Flow-	
	Through System, Microcosm, Germfree animal.	
	3. Physiological ecology of Microorganisms: abiotic limitations to	
	microbial growth, starvation strategies, environmental determinants -	
	temperature, radiation, pressure, salinity, water activity, pH, redox	
	potential, magnetic force, organic and inorganic compounds	
CREDIT II	1. Culture dependant and culture independent analyses of microbial	15 Hrs
	communities.	
	2. Quantitative ecology: Sample collection, processing and detection of	
	microbialpopulations	
	3. Determination of microbial numbers, biomass, measurement of	
	microbial metabolism.	
CREDIT III	1. Biological interactions –	15 Hrs
	1.1 Microbe – Microbe interactions – Interaction within single microbial	
	populationpositive	
	and negative interactions, Interactions between diverse microbial	
	populationsmutualism, commensalism, synergism, ammensalism,	
	parasitism and predation.	
	1.2 Microbe – Plant interactions – Interactions with aerial plant	
	structures.	
	1.3 Microbe – Animal interactions- Microbial contributions to animal	
	nutrition, Commensal and mutualistic intestinal symbionts, Symbiotic	
	light production.	
CREDIT IV	1. The animal as an environment – The indigenous microbial population	15 Hrs
	of alimentary tractand skin, factors affecting composition of flora,	
	sources of nutrients for organisms in the	
	alimentary tract and on skin, energy metabolism in rumen	
	2. Ecological control of pests and disease causing populations-	
	Modification of - populations, reservoirs of pathogens and vector	
	populations Microbial control of pests, genetic engineering in biological	
	control.	

References

1. Microbial Ecology by M. Lynch and others

2. Experimental Microbial Ecology by R. C. Burns and others

3. Environmental Microbiology by K. Vijaya Ramesh, MJP Publishers

4. Microbial Ecology by Larry L. Barton and Diana E. Northup Copyright © 2011 Wiley-Blackwell.

5. Soil Microbiology by N. S. Subba Rao Oxford and IBH Publishing Co. Pvt. Ltd

6. Introduction to Soil Microbiology by M. Alexander, John Wiley and Sons Inc. New York, London

7. Microbial Ecology by R. M. Atlas and R. Bartha

8. The Prokaryotes: A handbook on the Biology of Bacteria; M. Dworkin (Editor inChief) and others.

MMPR- 204 PRACTICAL COURSE I (4Cr)

UNIT	SEMESTER II	Credits
UNIT I	1. Isolation of RNA from yeasts.	1
	2. Isolation of Plasmid DNA from bacteria	
	3. Thermal denaturation of DNA	
	4. Gene transfer in E. coli by – conjugation	
	5. Demonstration of protoplast fusion in bacteria	
	6. Estimation of mutation rate in E. coli	
	7. PCR (demonstration)	
UNIT II	1. Production of a Lactic starter culture	1
	2. Fermentative production of gluconic acid	
	3. Fermentative production of ethanol by using Saccharomyces sp.	
	4. Fermentative production of acetic acid	
UNIT III	1. Enrichment and isolation of chitin degrading bacteria	1
	2. Enrichment of Clostridium species using potato, Thioglycollate broth and Candle jar	
	3. Spectroscopy -	
	3.1 Calibration of colorimeter/ spectrophotometer (Verification of Beer's	
	law)	
	3.2 Determination of absorption maxima, molar extinction coefficient and difference spectra	
UNIT IV	1. Qualitative and Quantitative study of water microflora	1
	2. Qualitative and quantitative study of air microflora	
	3. Isolation and characterization of microflora from human skin.	
	4. Demonstration of bacterial synergism and antagonism	
	5. Isolation and characterization of ruminant bacteria from animal gut.	

References

Genetics and Molecular Biology

1. PracticalMicrobiology by R. C. Dubey and D. K. Maheshwari. S. Chand & Co.

2. Environmental Science and Biotechnology: Theory and Techniques by A. G. Murugesan and C. Rajakumari. MJP Publishers

3. Laboratory Manual in Biochemistry by J. Jayaraman. New Age International Publishers

4. Experimental Microbiology by R. J. Patel. Aditya Publishers, Ahmedabad

5. Methods in Microbiology (Vol. 5B and Vol. 3A) by Norris and Ribbons. Academic Press

6. Molecular Cloning – A Laboratory Manual, Vol. 1,2,3 by J. Sambrook, E. F. Fritsch and T.Maniatis

7. Molecular Biology Laboratory Manual by Denny R. Randall

8. Environmental Science and Biotechnology- Theory and Techniques by A. G.

Murugesanand C. Rajkumari, MJP Publisher Chennai.

FERMENTAION

1. Dairy Microbiology by Robinson

2. Outlines of Dairy technology by Sukumar De

TECHNIQUES

1. Identification Methods for Microbiologists by B. M. Gibbs and F. A. Skinner. AcademicPress

2. Methods in Microbiology (Vol. 1, 3A and 5B) by Norris and Ribbons. Academic Press

3. Handbook of Microbiological Media by R. M. Atlas. CRC Publications

4. Laboratory Exercises in Microbiology by Robert A. Pollock and others

MICROBIAL ECOLOGY

1. PracticalMicrobiology by R. C. Dubey and D. K. Maheshwari. S. Chand & Co.

2. Environmental Science and Biotechnology: Theory and Techniques by A. G. Murugesanand C. Rajakumari. MJP Publishers

3. Experimental Microbiology by R. J. Patel. Aditya Publishers, Ahmedabad

4. Laboratory Microbiology by L. Jack Bradshaw. W. B. Saunders & Co.

5. Benson's Microbiological Applications: Laboratory Manual in GeneralMicrobiology byAlfred E. Brown

6. MicrobiologicalMethods by Michael Collins

7. Handbook of Microbiological Media by R. M. Atlas. CRC Publications

8. Laboratory Excersises in Microbiology 5th edn. Harley Prescott

UNIT Semester II Credit UNIT I 1 1 Chromatography -1.1 Separation of dyes and amino acids on silica gel column 1.2 Ion exchange chromatography of amino acids / proteins 2 Agarose gel electrophoresis 3 Density gradient centrifugation of budding yeast cells 4. Preservation of microbial cultures -4.1 Slant cultures of aerobic and facultative organisms 4.2 Stab cultures of microaerophilc organisms 4.3 Soil culture technique for spore formers UNIT II 1 1 Environmental monitoring : air sampling. 2 Microbial limit test 3 Sampling of pharmaceutical products (syrups, suspensions, creams and ointments, ophthalmic preparations) for microbial contamination and load. Molecular docking and drug designing 4

MEPR- 205 PRACTICAL COURSE II (2Cr)

References

Techniques

- 1. Laboratory Manual in Biochemistry by J. Jayaraman. New Age International Publishers
- 2. Experimental Microbiology by R. J. Patel. Aditya Publishers, Ahmedabad
- 3. Microbiological Methods by Michael Collins

Quality assurance

- 1. Practical Microbiology by Plummer
- 2. Industrial Microbiology: A Laboratory Manual- Mathur.

Nature of question paper and scheme of marking:

a) External Evaluation (Semester exam) Theory paper: Maximum marks - 80

- \checkmark Equal weightage shall be given to all units of the theory paper
- ✓ Total number of questions -07
- ✓ All questions will carry equal marks.
- \checkmark Out of the seven questions, five are to be attempted of which Question 1 will be compulsory
- ✓ Question No. 1 will be of an objective type
- ✓ Total No. of bits -16, Total marks -16
- ✓ Nature of questions multiple choice, fill in the blanks, definitions, true or false, match the following
- \checkmark These questions will be answered along with the other questions in the same answer book
- \checkmark Remaining six questions will be divided into two sections, I and II.
- ✓ Four questions are to be attempted from these sections in such a way that not more than two questions are answered from each section.
- \checkmark Both sections are to be written in the same answer book

Total Marks: 80

Instructions: 1. A total of **FIVE** questions are to be answered from the entire paper

- 2. Answers to all the **FIVE** questions are to be written in the **SAME** answer book
- 3. Question 1 is **COMPULSORY**
- 4. Attempt **ANY TWO** questions from Section I (Q. 2 to Q. 4) and **ANY TWO** questions from Section II (Q. 5 to Q. 7)
- 5. No supplements will be provided
- 6. Figures to the **RIGHT** indicate **FULL MARKS**
- Q.1 State whether the given statements are TRUE or FALSE/MCQ. (16)

	SECTIO	ON – I	
Q. 2.	OF	((16)
Q. 2.			(16)
Q. 3	Discussin brief (ANY TWO) a) b) c)	((16)
Q. 4	Write short notes on (ANY FOUR) a) b) c) d) e) f)		(16)

SECTION – II

Q. 5		OR	(16)
Q. 5			(16)
Q. 6	Describe in brief (ANY TWO) a) b) d)	((16)
Q. 7	Write short notes on (ANY FOUR) a) b) c) d) e) f)	((16)

b) Internal Evaluation Theory paper: Maximum marks - 20

Objective- multiple choice/True or false/ fill in the blanks/match the following Total number of questions will be 10 each carrying 01 mark

PRACTICAL EXAMINATION

- There will be semester wise practical examination to be conducted at the end of each semester.
- Total marks -150 per semester out of which 120 marks will be assessed by external examiner.
- Nature of question paper for practical examination will be provided by BOS before the practical examination.

9. Scheme of Teaching

Offline / online as per the requirement of NEP.

10. Examination Pattern

Theory – Semester wise

Practical – Semester wise

On Job Training / Field Project

Guidelines for conducting OJT/FP- 206 Field Project in Sem II of the curriculum

(Reference: Government of Maharashtra GR:NEP 2022/ PRA-KRA-09/VISHI-3 SHIKANA, Mantralaya, Mumbai dt. 16 May 2023)

- 1. The candidate should complete the work of RM-MIC 206 after completion of second semester in the summer vacation.
- 2. On job training (OJT)/ Internship/ Apprenticeship of 60 hours must be completed by the candidate in industry/ health sectors / research labs / public testing laboratories / diagnostic laboratories.
- 3. During OJT period the candidate should submit weekly progress report and attendance report to the Head of the department of concerned education institute.
- 4. The administration of the department should keep the record of attendance and progress and that will be submitted to external examiner for verification.
- 5. The evaluation of OJT should be done on following aspects and that should be reflected through training report and presentation of the candidate.
 - The new skills achieved by the candidate during OJT /Internship/ Apprenticeship
 - Whether the period spent by the candidate has enriched his practical skills and subject knowledge.
 - Whether the candidate has inspired for entrepreneurship
- 6. The candidate may opt for field projects as an alternative for On job training (OJT)/ Internship/ Apprenticeship.In case of field projects, the evaluation should be done on the basis of
 - Selection of the field project considering its use for community.
 - Sample size and statistical methods followed for reaching the conclusion.
 - Skills achieved.

Research Methodology - As per Theory Paper

11. Nature of question paper and scheme of marking:

a) External Evaluation (Semester exam) Theory paper: Maximum marks - 80

- ✓ Equal weightage shall be given to all units of the theory paper
- ✓ Total number of questions -07
- ✓ All questions will carry equal marks.
- \checkmark Out of the seven questions, five are to be attempted of which Question 1 will be compulsory
- ✓ Question No. 1 will be of an objective type
- ✓ Total No. of bits -16, Total marks -16
- ✓ Nature of questions multiple choice, fill in the blanks, definitions, true or false, match the following
- \checkmark These questions will be answered along with the other questions in the same answer book
- \checkmark Remaining six questions will be divided into two sections, I and II.
- ✓ Four questions are to be attempted from these sections in such a way that not more than two questions are answered from each section.
- \checkmark Both sections are to be written in the same answer book

Total Marks: 80

Instructions: 1. A total of **FIVE** questions are to be answered from the entire paper

- 2. Answers to all the **FIVE** questions are to be written in the **SAME** answer book
- 3. Question 1 is **COMPULSORY**
- 4. Attempt **ANY TWO** questions from Section I (Q. 2 to Q. 4) and **ANY TWO** questions from Section II (Q. 5 to Q. 7)
- 5. No supplements will be provided
- 6. Figures to the **RIGHT** indicate **FULL MARKS**
- Q.1 State whether the given statements are TRUE or FALSE/MCQ. (16)

SECTION – I

(16)

Q. 2.

Q. 2. (16)

Q. 3	Discussin brief (ANY TWO)	(16)
	a)	
	b)	
	c)	
Q. 4	Write short notes on (ANY FOUR)	(16)
	a)	
	b)	
	c)	
	d)	
	e)	
	f)	

SECTION – II

Q. 5		(16)
	OR	
Q. 5		(16)
Q. 6	Describe in brief (ANY TWO)	(16)
	a)	
	b)	
	d)	
Q. 7	Write short notes on (ANY FOUR)	(16)

a)

- b)
 c)
 d)
 e)
- f)

b) Internal Evaluation Theory paper: Maximum marks – 20

Objective- multiple choice/True or false/ fill in the blanks/match the following

Total number of questions will be 10 each carrying 01 mark

PRACTICAL EXAMINATION

- There will be semester wise practical examination to be conducted at the end of each semester.
- Total marks -150 per semester out of which 120 marks will be assessed by external examiner.
- Nature of question paper for practical examination will be provided by BOS before the practical examination.

12. Equivalence of courses

M. Sc. Part I (S	emester I and I	I)
------------------	-----------------	------------

Old C	Old Course			Equivalent Course		
Sem. No.	Course Code	Title of Old Course	Credit	Course Code	Title of New Course	Credit
I I	MIC - 101	Taxonomy and Microbial Diversity	4	MMT - 101	Microbial Systematics	4
Ι	MIC - 102	Virology	4	MMT - 102	Immunology	4
Ι	MIC - 103	Genetics and Molecular Biology	4	MET - 103	A – Biochemistry B – Microbial Metabolism C – Environmental Microbiology	4
Ι	MIC - 104	Immunology	4	RM -106	Research Methodology	4
Ι	MIC - 105	Practical Course – I	4	MMPR	Practical Course I	4
Ι	MIC - 106	Practical Course – II	4	MEPR	Practical Course II	2
II	MIC - 201	Techniques in Microbiology	4	MMT - 201	Genetics and Molecular Biology	4
II	MIC - 202	Microbial physiology, biochemistry and metabolism	4	MMT - 202	Fermentation Technology	4
Π	MIC - 203	Medical Microbiology	4	MET - 203	A – Techniques in Microbiology B - Quality Assurance and Validation in Pharma sector C- Microbial Ecology	4
II	MIC - 204	Microbial Ecology	4	OJT/FP	On Job Training / Field Project	4
II	MIC - 205	Practical Course – III	4	MMPR	Practical Course I	4
II	MIC - 206	Practical Course – IV	4	MEPR	Practical Course II	2